
Quazy Quaternions: Part I

1. Introduction
Invented and devcloped by William Hamilton in 1843, qualerníons are essentially a generalization of complex

numbers to four dimensions (one real ¿i-"nrion, tf,ree ffinu.y¡ Quaternions have important' desirable prop-

erties when used to represent rotations, u.¿, * ,uÀ, u," *J'thy áittu¿V in this cou¡se' where rotations between

coordinate frames will occupy much of our;;;i;;, especialþ early on' This document gives a öric;fintroduc-

tion on quatemions and follows closely the notation in ¡í¡, *niðn offers a much more exhaustive treatment'

2. Basic definition

Aquaternion q consistsofascalarparts,se 9ì,andavcctorpart v : (x,y,z), ve S3'rffewilluseseveral

different forms to dcnote quatemions. These are given in equations (l) through (3) below:

q=[s,v]

q =ls, (x, y, z))

{:s*ir+iY+kz
Indefinition(3)above,theimaginarynumberi,jandkhavethefollowingproperties:

i2:¡z:¡2:-1
ij:k
j¡:-k

From (4) through (6) the following additional propcrties can be derived:

ijk: -l
jk: i

kj=-i
Ík:-j
ki:¡

3. Basic proPerties

A. Addition

LeÇ .

q : Ís,vl : [s, (x,Y,z)|,

and,

l' : [s', v'] : [s', (x',y',/)l-

Then,

q+q'= [s*s',v+v']
: (¡ +s') +i(r+x') + j(Y +Y') +k(z + z')

Clcarly, quaternion addition is associative and commutative'

B. MuttiPlicaiion

With definitions (12) and (13), theproduct of two quaternions q and q' is given b¡

(r)

(2)

(3)

(4)

(s)

(6)

(7\

(8)

(e)

(10)

(l l)

(13)

(14)

(12)
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OO' = [ss'-v-v',vxv'+sv'*s'v] (15)

Equation (15) can be verified by writing,

gg'=ls, vl[s', v'] (16)

= (s + ix + jy+ kz)(s' + ¡/ + jy' + kz')

expanding the product in equation (16), applying properties (4) through (l l), and grouping terms accord-

ingly.Asareminder,notethatfortwovectors a= (ar,ar,ar) and U: (ör,br,br), thedotandcross

products are defined as,

a'b=arbx+arbr+a"br: b.a 07\

a X b = (oybr- arbr, arbr- arb", arbr- arår) = -b x a (18)

respectively. Notc that two purely scalar quaternions, [s, 0] and [s', 0] , result in a scalar product, while two

purely vector quatemions, [0, v] and [0, v'], yield both the dot product (albeit negative), and the cross

product,

[0, v] [0, v'] : [-v . v', v x v'] . (19)

It can bc easily verified that multiplication is associative, but not commutativc; that is, in gcneral, the order

of multiplication does matter. One case of multiplication that ¡s commutative is multiplication of a general

quaternion by a scalar quatcrnion:

[r, 0][s, v] : [s, v]t¿ 0] : [rs, rv]. (20)

C. Conjugatc

The conjugatc of a quatemion q : [s, v] is dsnotcd as 4* and is defined as,

O* - [s, -vl. Ql)

D. Norm

The norm (or length) ofa quatcrnion g [as defined in equation (12)] is given by,

llqll: Jic. Q2)

Since,

qq* = Ls2-(v'(-v)),vx(-v)+sv+s(-v)l e3): ¡s2+v.v,0l

equation (22) can be expanded to,

llqll: J'z**rz*"' (24)

Note the similariry of equation Q4) to the computation of the len$h of a vcctor. A unit guaternion is any

quatemion of unit length such that llsll = t .

D. Inversion

The invcrse ofa quatcrnion g [as delìned in equation (12)] is given by,

q-r : q* /llqll . (25)

This can be easily verified by computing 44-t :

qq-t: q-tq = cq*/llqll2:llqll2/llqll2 = u,ol- (26)
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4. Rotations through quaternions

À. Basics

Below we will show that every nnl'f quatemion represents a unique rotation in space. It is easy to show that

any unit quaternion can be expressed as,

q : lcos(0/2), sin(0,22)kl Q7)

whcre Ê : (kr, IÍy,tr) rlcnotes an arbitrary unit vector. Such a unit quatcmion represents a rotation of 0

about the vector k.

Now, let p = (pr, py, p 2) denote the Calesian coordinates of a point in space. Let us assume that we wish

to rotate p by 0 abdut thc vector k to p'. Let,

P : I},Pl, and, (28)

p' : [0, p'1. Q9)

Then,

p' = clpq* (30)

In words, rotation by an anglc 0 about a unit vsctor ir can be achieved by pre- and post-multiplying the

quatemion representation p of the vector p by the quaternion g [as given by (27\7 and its conjugate q* ,

respectivcly.

Let us shorv that equation (30) results in the same rotation matrix ,R;(0) as previously dcrived in class

tlrrough an argument of composite rotations (as demonstratedinMathenìatica)-

P' : qPq* (31)

p' = [,s,v][0,p][s,-v] Q2)

p': Í-v.p,vxp+spl[.r,-v] (33)

. [-s(v. p) + (v x p)-v +s(p 'v),
n : ' r\r, ''" (34)
' -(" x p) x v-s(p x v) +s(v x p) +s2p'r v(v'p)

Now, expression (34) can be significantly simplified. Note that the scalar part of (34) reduces to zero, since

the dot products -s(v'p) and s(p'v) cancel each other, and,

(vxp)'v:0 (35)

which can be verified by inserting definitions (l 7) and (l 8) for the dot and cross products, respectively, into

(35). For the vector part,

-r(p x v) +s(v x p) : 2s(v x p) (36)

and,

(vxp)xv: (v.v)p-(y.p)v [easilyveriliedthrough(17)and(lS)] (37)

so that,

p': f},("2-n.v)p +2s(vxp)+2(v.p)vl €8)

or, equivalently,

p': (s2-v.v)p +2s(vxp)+2(v.p)v. (39)

Wc are now ready to substitute (27) into (39):

O' : ¡cos2(0 /2)-sin2(0/2)lp+2cos(g/2)sin (g/2)ixp+2sin¿(a/2Xû'p)t (40)
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Applying the following trigonometric half-angle identities,

coso : cos21a/2¡-sin21a/z¡ (41)

(42)sin0 : 2 cos (0 /2) sin(O / 2)

(t-coso) = (l- coszço/z¡+sinz{rc.tz¡I : zsir|2(0/2) [from(al)and(a2)] (43)

equation (40) simplifies even ñrrther to:

O': 1cos0)p+(sin0)ûxp+(l-cos0)(û.p)k (4)

O': (c0)p+(s0)kxp+(v0)(k.p)k, (45)

where c0 : cos0, s0 : sinO and v0 = I - cos0. Equation (44) is an important result known as Rod-

rigues formula. When we expand equation (a5) by component terms, we get (afler a lot of math best left to

Malhemalica),

P' = -Rç(o)P Ø6)

r ^ -l
| {k'2vo-rco¡ (krkrvl-k"sl) (k'k"vo+Érso)l

nû(0) = 
l&¡r"e+ft,so) (klvl+co) (k È,v0-erso)l Ø7)

lr¡,re-frrso) (krk"vo+t so) &jva+cfi )
which is exactly the same result as obtaified in class through an argumcnt of compositc rotations. The two

most important cquations in this section are (31) and (45), which are rcprinted below to emphasize their

importance:

p' : qpq* [rotation through quatemions] (48)

p' : (cO)p + (sO)k x p + (vO)(k. p)k lRorlrigues formula] (4g)

B. Composite quaternion rotations

Assume lwo rotations: qo followcd by qt - The result p' of the first rotation is given by,

¿= qoPqo* (50)

while the result p" after both rotations is given by,

p" = qrp'qr* (51)

P" : qt(qopqo*)qf (52)

p" : (qflo)p(Qs*4f) (53)

p" : (qßo)P(l¡¡*lf) (54)

P" = (qß.o)p(qflù" (55)

Note that from (54) to (55) we used the following fact:

qo*qf = (qtqù* (56)

for unit quaternions, which can be readily shown through the definition of quaternion multiplication. Equa-
tion (56) is important in that it shows that composite rotations can be computecl through simple unit quater-

nion multipfication.
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C. Quaternion fo aris-angle rcpresentation

For anY quaternion g,

(57)g: [s'vl

v,fe can readily compute the equivalent axis-angle representation. From (27),

q : Ícos(0/2), sin(0,22)kl (58)

we can compute 0 and Ê as:

0 : 2atan(llvll,s) (59)

û : v/llvll (60)

Note that when 0 = 0, the axis of rotation becomes ill-conditioned, since any axis is equivalent for a null

rotation.

D. Quaternion to rotafion matrix

Suppose we have a quaternion q,

q = fs,(x,y,z)|. (61)

and would like to identifi the corrcsponding 3 x 3 rotation matrix R. We start by expanding equation (39)

into the components of v : (x, y, z) :

p'= (s2-v.v)p +2s(vxp)+2(v.p)v (62\

o, = 

[u, 

_.2 _ y2_.,)[ 
: il 

.^|; 
i A.,b:i,:Å),

(63)

p': p (64)

Note that in (63), we uscd the following matrix representation of the cross product:

(vxp):

which is casily verified by doing a component-by-component comparison of both sides of equation (65)-

Thus, lt is given by,

l, - z1r, * ",¡ 2(xy - sz) 2(xz* "rt I
| 2Qy + sz) t -2(x2 + z2¡ 2(stz - sx) 

I

| 2þz-sy¡ 2(yz+sx) l-262+yz¡)

(65)
lo -, tfl" o -'lp
l-, ' ol

it:

E. Rotation matrix to quafernion

Suppose we have a rotation matrix ,R,

| -20/2 + z2)

2(xy + sz)

2(xz - sy)

Z(xy - sz)

| -2(x2 + z2)

2Qz + sx)

z(xz+ sfi I
20tz- sx) |

t -Zgz + rz¡)

-5-
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f',, ',, ',rl
À : lrr, ,zz rztl

þr, "r'rJ
such that,

P' : /lP

and would like to identiff the corresponding quaternion q 
'

q : [s, (x,y,z)l'

5.

Froln the result of the previous section in (66), we can write down the following 10 convenient eqnations

rclating rU to [s, (x, Y, z)]'-

(70)

"' 
: jtr +rrr*r22+r-,.)

*, : ltl + r 11- r22- r.33) (71)

,, : I0-rrr * r.r2-\3) Q2\

,': I¡-rrr-r22+r33) 
03)

and,

l_ Q4)sx = 4Q32-r2)

t. (75)
sY: l?n-ry)

l. (76)
. sz : ot21-rp)

t. Q7)xy = oQp+r¡)

|. (78)
xz : 4(rp+ry1)

y, : !{r23+ 
r32\ (Ig)

Now, to solve for thc paramcters ls,(x,y,z)l robu^stly, use the first four equations [(70) through (73)]' to

solve for tf,e U.gestìäi,r"a porur*i"i in {"2, ,2,y2,;2I ' !hen, solve for the remaining three pararneters

using three of the six remaining cquations t(7a) through (79)l'

Conclusion: Part I
Unit quatemions represent rotations. They have sevcral advantages over three-angle representations (both

fixed axis and Euler angles) and rotation matrices:

1. unit quaternions do not suffer from singularities, as three-angle conventions do'

2. unit quatemions rcpresent the most compact way ofrepresenting rotations without redundancv or singu-

lariry (unlike rotati<in matrices themselvcsfon" .un uir"alize unit quaternions populating the surface of a

(67',)

(68)

(6e)
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sphere in four-dimensional Euclidean space, where each quaternion 4 and its antipode -q represent a

unique rotation in three dimensions'

3. The unit quaternion representation allows us to.define -d t:-!Ì::.19*t--*" between two rota-

tions. This is not, in general possible or easy wrth thrcc-angle conventions or rotation matrices'

4. In finite-precision computations, ensuring proper rotations through frequcnt re-normalization is easy for
'- 

unit qu"i"-ions, but significantly trickicr for rotation matrices'

5. For simtrlation purposes, it is casy to generate a uniformly random dislribution of rotations in quatemion

space.

6. unit quaternions allow for the computation of shortest-path- smoot-h' continuous-velocitv trarjectories

between two rotations (represented 
"r,rnit 

*r",ñilngfh'-*-angle conventions make this vcry difficult'

if not irnPossible-
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