3.

Quazy Quaternions: Part 1

Introduction

Invented and developed by William Hamilton in 1843, quaternions are essentially a gencralization of complex
pumbers to four dimensions (one real dimension, three imaginary). Quaternions have important, desirable prop-
erties when used to represent rotations, and, as such, are worthy of study in this course, where rotations between
coordinate frames will occupy much of our attention, especially carly on. This document gives a brief introduc-
tion on quaternions and follows closely the notation in [1], which offers a much more exhaustive treatment.

Basic definition

A quaternion g consists of a scalarpart 5, s € R, and a vectorpart v = (x,,2), VE R3 . We will use several

different forms to denote quaternions. These are given in equations (1) through (3) below:

g=[s,v] M
g=[s (x2)] @
g=stix+jy+kz ©)
In definition (3) above, the imaginary number i, j and k have the following properties:
2 ==k =-1 “@
ij =k)
ji=-k 6
From (4) through (6) the following additional properties can be derived:
ijk = -1 N
jk =i ®)
kj = - &)
ik = —j (10)
Ki = j (11)
Basic properties
A. Addition
Let,
g = [s,v] = [s,(x, 5, 2)], (12
and,
g =[5, v] =[5, (x5, 2)]. (13)
Then,
g+q =[s+s,v+v] (14)

= (s+s) +i(x+x) +j(p +)) +h(z+2)
Clearly, quaternion addition is associative and commutative.

B. Multiplication

With definitions (12) and (13), the product of two quaternions g and ¢' is given by,

CSE 399 Special Topics in Robotics and Animation Fall 2001

qq' = [s5'— V-V, v XV +5V' +5'V] 15)
Equation (15) can be verified by writing,
qq9'=1s, V![s', V'] (16)
=(stix+jyt+kz)(s' +ix' +jy + kz')

expanding the product in equation (16), applying properties (4) through (11), and grouping terms accord-
ingly. As a reminder, note that for two vectors a = (a,,a,,a,) and b = (b by, b,), the dot and cross
products are defined as,

a-bzaxbx+ayby+azbz =b-a an

axb;(aybz—a b,a,b —ab axby—aybx) = -bXxa (18)

z-y x z

respectively. Note that two purely scalar quaternions, [s, 0] and [s', 0], result in a scalar product, while two
purely vector quaternions, [0, v] and [0, v'], yield both the dot product (albeit negative), and the cross

product,
[0, v][0, V'] = [-v-V,vXV']. (19)

It can be easily verified that multiplication is associative, but not commutative; that is, in general, the order
of multiplication does matter. One case of multiplication that is commutative is multiplication of a gencral

quaternion by a scalar quaternion:

[r,01[s, v] = [s,v1[r, 0] = [rs,rv]. (20)

C. Conjugate
The conjugate of a quaternion g = [s, v] is denoted as g* and is defined as,
q* = [s,—v]. (21)

D. Norm
The norm (or length) of a quaternion g [as defined in equation (12)] is given by,
lgll = ~ag* (22)
Since,
qq* = [s2— (V- (=V)), v X (-V) + 5V + 5(-V)] 23)
= [s2+v-v,0]
equation (22) can be expanded to,

lgll = J2 4224 y7 4 22 24

Note the similarity of equation (24) to the computation of the length of a vector. A unit quaternion is any
quaternion of unit length such that |g] = 1.

E. Inversion

The inverse of a quaternion g [as defined in equation (12)] is given by,

g = q*/lql. (25)
This can be easily verified by computing gq7!:
997" = ¢7'q = gq*/llql* = lgh?/lql? = 11, 0]. (26)

_2-

CSE 399 Special Topics in Robotics and Animation Fall 2001

4. Rotations through quaternions

A. Basics

Below we will show that every unit quaternion represents a unique rotation in space. It is easy to show that
any unif quaternion can be expressed as,

g = [cos(8/2), sin(6/2)k] 27N
where k = (ks Ify, k,) dcnotes an arbitrary unit vector. Such a unit quaternion represents a rotation of 6
about the vector k.

Now, let p = (p,, Py p,) denote the Cartesian coordinates of a point in space. Let us assume that we wish
to rotate p by 0 about the vector k to p'. Let,

p = [0, p], and, (28)

p = 1[0,p]. _ (29)
Then,

P = qprq* (30)

In words, Totation by an angle 0 about a unit vector k can be achieved by pre- and post-multiplying the
quaternion representation p of the vector p by the quaternion g [as given by (27)] and its conjugate g*,
respectively.

Let us show that equation (30) results in the same rotation matrix R-(8) as previously derived in class
through an argument of composite rotations (as demonstrated in Mathematica).

P = gpgq* (31
p' = [s,v1(0, plls, —v] (32)
p = [-v-p,vxp+splls,—v] (33)

- [—S(V'p)+(vxl’)"'+-"(l"v)v (34)

—~(vXP)XV—s(pXV)+s(vXp)+sip+v(v-p)
Now, expression (34) can be significantly simplificd. Note that the scalar part of (34) reduces to zero, since
the dot products —s(v - p) and s(p - v) cancel each other, and,

(yxp)-v=20 35)

which can be verified by inserting definitions (17) and (18) for the dot and cross products, respectively, into
(35). For the vector part,

—s(pXxv)+s(vxp) = 2s(vxp) (36)
and,

(vXp)Xv = (v-v)p—(v-p)v [easily verified through (17) and (18)] (€)
so that, .

P =1[0,(s2=v-v)p +2s(vxp)+2(v-p)v] (38)
or, equivalently,

p' = (s2—v.v)p +2s5(vXp)+2(v-p)Vv. (39)
We are now ready to substitute (27) into (39):

p' = [cos2(8/2) —sin2(0/2)]p + 2cos(0/2)sin(6/2)k x p + 2sin2(8/2)(k - p)k (40)

CSE 399 Special Topics in Robotics and Animation Fall 2001

Applying the following trigonometric half-angle identities,

cos® = c0s2(8/2)—sin%(8/2) (41)

sin@® = 2cos(6/2)sin(6/2) (42)

(1—cos8) = (1—cos2(8/2) +sin2(0/2)) = 2sin?(8/2) [from (41) and (42)] 43)
equation (40) simplifies even further to:

p' = (cos@)p + (sin0)k x p + (1 — cosB)(k - p)k (44)

p' = (cB)p + (s8)k x p + (vO)(k - p)k, (453)

where c0 = cosB, s8 = sin® and v6 = 1— cos®. Equation (44) is an important result known as Rod-
rigues formula. When we expand equation (45) by component terms, we get (after a lot of math best left to
Mathematica), '

p' = R (0)p (46)

(k2v0 +cB) (kk vO—Kk,s0) (k k,v0+ K s0)
Re(0) = |(kok, v +ks0) (k2vO+c0) (kk,v0—ks0)
(ke ,v0 —k 50) (k k,vO +k,s0) (kjv0+c0)

(47)

which is exactly the same result as obtained in class through an argument of composite rotations. The two
most important equations in this section are (31) and (45), which are reprinted below to emphasize their

importance:
P' = gqpq* [rotation through quaternions] (48)
p' = (cB)p+(s8)k x p + (v0)(k - p)k [Rodrigues formula] 49)
B. Composite quaternion rotations
Assume two rotations: g, followed by g, . The result p' of the first rotation is given by,
P' = qoP4¢* (50)
while the result p" after both rotations is given by,
P'=qrqg* D
P" = q1(4oP90")1* (52)
" = (9199)P(30*0,®) (53)
P' = (9,99)p(95*9,™) (54
P" = (9,49)p(q,99)* (55)
Note that from (54) to (55) we used the following fact:
(56)

qo*ql* = (‘11‘10)*

for unit quaternions, which can be readily shown through the definition of quatemion multiplication. Equa-
tion (56) is important in that it shows that composite rotations can be computed through simple unit quater-

nion multiplication.

CSE 399 Special Topics in Robotics and Animation Fall 2001

C. Quaternion to axis-angle representation

For any quaternion g,

q = [sv] (57)
we can readily compute the equivalent axis-angle representation. From (27),

q = [cos(8/2), sin(6/2)k] (58)
we can compute 6 and K as: '

0 = 2atan(]lv|,) (59)

k = v/Ivl (60)

Note that when 6 = 0, the axis of rotation becomes ill-conditioned, since any axis is equivalent for a null
rotation.

D. Quaternion to rotation matrix

Suppose we have a quaternion ¢,
g = [s, (x5 2)]. (61)

and would like to identify the corresponding 3 x 3 rotation matrix R . We start by expanding equation (39)
into the components of v = (x, y,z):

p = (s2-v-v)p +2s(vXxp)+2(v-p)V (62)
(2
100 0 —=zy X< Xy Xz
p = (sz—xz—yz-—zz) 010 +25|z 0 —x|*2 xy y2 yz| [P (63)
001 -y x 0 xz yz 22

(1—2(y2+22) 2xy—-sz) 2(xz+5y)

P'= | 2xy+sz) 1-2(x2+z2) 2(yz—sx) |P (64)
| 2(xz—sy) 2yztsx) 1-2(x2+y?)
Note that in (63), we uscd the following matrix representation of the eross product:
0 —= y
(vxp)=|z 0 —x|P (65)
-y x 0

which is casily verified by doing a component-by-component comparison of both sides of equation (65).
Thus, R is given by,

1- 2(y2 +z2) 2(xy-—sz) 2(xz t+5y)
R =1 2xp+sz) 1-2(x2+22) 2(yz—sx)
2(xz—sy) 2(yz+sx) | —2(x2+y1)

(66)

E. Rotation matrix to quaternion

Suppose we have a rotation matrix R,

CSE 399 Special Topics in Robotics and Animation Fall 2001

n'n"s
R=|ryrpry ©7)
Fa1 2 ''n3
such that,
p' = Rp, (68)
and would like to identify the corresponding quaternion ¢,
(69)

g = [s,(x»2)].
From the result of the previous section in (66), we can write down the following 10 convenient equations
relating rijto [s, (x, »,2)]:

1
s? = (U HryFryptry) (70)
2 - ¢ 1+)
x> = Z(T T2 =)
2= Yo, (72)
yr = g(1=riy+ryn—ry)
5 _ 1
¢ = Z(l—r”—-r22+r33) (73)
and,
1
sx = Z(r32—r23) (74)
=1 75
sy = Z(’13—r3|) (75)
. 76
sz = Z(rm—ru) (76)
1
xy = Z(r12+r21) an
1
xz = Z(rl3+r3]) (78)
)]

1
yz = 3(r3+ry)

Now, to solve for the parameters [s, (x, y, 2)] robustly, use the first four equations [(70) through (73)], to
solve for the largest valued parameter in {s2, 2%, y2, 22} . Then, solve for the remaining three parameters
using three of the six remaining equations [(74) through (79)].

5. Conclusion: Part I
Unit quaternions represent rotations. They have several advantages over three-angle representations (both
fixed axis and Euler angles) and rotation matrices:

1. Unit quaternions do not suffer from singularitics, as three-angle conventions do.

2. Unit quaternions represent the most compact way of representing rotations without redundancy or singu-
larity (unlike rotation matrices themselves). One can visualize unit quaternions populating the surface ofa

CSE 399 Special Topics in Robotics and Animation Fall 2001

sphere in four-dimensional Euclidean space, where each quaternion ¢ and its antipode —g represent a
unique rotation in three dimensions.

3. The unit quaternion represcntation allows us to define and compute a distance metric between two rota-
tions. This is not, in general possible or easy with three-angle conventions or rotation matrices.

4. In finitc-precision computations, ensuring proper rotations through frequent re-normalization is easy for

unit quaternions, but significantly trickier for rotation matrices.

5. For simulation purposes, it is easy to gen iforml listribution of rotations in quaternion

spacc.

6. Unit quaternions allow for the computation of shortest-path, smooth, continuous-velogity trajectories
between two rotations (represented as unit quatemions). Threc-angle conventions make this very difficult,
if not impossible.

References
{1] E.B.Dam, M. Koch and M. Lillholm, “Quaternions, Interpolation and Animation,” DIKU-TR-98/5, Techni-
cal Report, Department of Camputer Science, University of Copenhagen, 1998 (http://www.diku.dk/
research/published/98-5.ps.gz).

