For euler oagles, we rotate around $X, Y$, of $Z$ axes in some order.
$\rightarrow$ but what about con arbitrary axis?
let $\hat{u}$ be a unit vector to rotate around


Recall: rotating around $z$


Step 1: Decompose

$P_{11}=$ projection of $p$ onto $\hat{u}$

$$
\begin{aligned}
P_{11} & =\left(p \cdot \frac{\hat{u}}{\|\hat{u}\|}\right) \frac{\hat{u}}{\|\hat{u}\|} \quad\|\hat{u}\|=1 \\
& =(p-u) p \\
P_{\perp} & =p-p_{1}=p-(p \cdot u) u
\end{aligned}
$$

Step: Rotate

$$
P_{\perp}^{\prime}=\cos \theta p_{\perp}+\sin \theta(u \times p)
$$

* $p$ is in XY Plane, 1 to the $z$ axis
$P$ is not wir.t to a plane
to $\hat{u}$

Approach
(1) Decompose $P$ into 2 parts
(a) One $P_{\perp}$ which is perpendicular to $u$
(b) One, $p_{11}$, which parallel to $u$
(2) Rotate $P_{1}$
(3) Put $P_{1}+P_{\|}^{\prime}$ back together"
( ump)


Step 3: Put $P_{1}^{\prime}$ \& $P_{11}$ together

$$
\begin{aligned}
p^{\prime}=p_{11}+p_{\perp}^{\prime} & =(p \cdot u) u+\cos \theta p_{\perp}+\sin \theta(u \times p) \\
& =\cos \theta p+(1-\cos \theta)(p \cdot u) u+\sin \theta(u \times p)
\end{aligned}
$$

NOTE: We usually we the above qu in matrix form

$$
\left.\begin{array}{l}
\text { TE: We usually use the above } \\
R_{u}(\theta)=\left[\begin{array}{ccc}
c \theta+(1-c \theta) u_{x}^{2} & -s \theta u_{z}+(1-c \theta) u_{x} u_{y} & u_{y} s \theta+u_{x} u_{z}(1-c \theta) \\
-u_{z} s \theta+(1-c \theta) u_{x} u_{y} & c \theta+(1-c \theta) u_{y}^{2} & -u_{x} s \theta+(1-c \theta) u_{y} u_{z} \\
s \theta u_{y}+(1-c \theta) u_{x} u_{y} & -u_{x} s \theta+(1-c \theta) u_{y} u_{z} & c \theta+(1-c \theta) u_{z}^{2}
\end{array}\right]
\end{array}\right]
$$

